home *** CD-ROM | disk | FTP | other *** search
- VERSION 4.00
- Begin VB.Form frmMain
- Caption = "aiNet DLL & VB40 32 bit; Example #1"
- ClientHeight = 6324
- ClientLeft = 1068
- ClientTop = 1536
- ClientWidth = 9024
- BeginProperty Font
- name = "MS Sans Serif"
- charset = 1
- weight = 700
- size = 7.8
- underline = 0 'False
- italic = 0 'False
- strikethrough = 0 'False
- EndProperty
- Height = 6708
- Icon = "T1VB432.frx":0000
- Left = 1020
- LinkTopic = "Form1"
- ScaleHeight = 6324
- ScaleWidth = 9024
- Top = 1200
- Width = 9120
- Begin VB.PictureBox Picture1
- BorderStyle = 0 'None
- Height = 1452
- Left = 120
- Picture = "T1VB432.frx":030A
- ScaleHeight = 1452
- ScaleWidth = 7692
- TabIndex = 3
- Top = 120
- Width = 7692
- End
- Begin VB.TextBox tOut
- BorderStyle = 0 'None
- BeginProperty Font
- name = "Courier New"
- charset = 1
- weight = 400
- size = 8.4
- underline = 0 'False
- italic = 0 'False
- strikethrough = 0 'False
- EndProperty
- Height = 4572
- Left = 120
- MultiLine = -1 'True
- ReadOnly = -1 'True
- TabIndex = 2
- Top = 1680
- Width = 7332
- End
- Begin VB.CommandButton btnExit
- Caption = "E&xit"
- Height = 375
- Left = 7680
- TabIndex = 1
- Top = 2400
- Width = 1215
- End
- Begin VB.CommandButton btnStart
- Caption = "&Start"
- Height = 375
- Left = 7680
- TabIndex = 0
- Top = 1920
- Width = 1215
- End
- Attribute VB_Name = "frmMain"
- Attribute VB_Creatable = False
- Attribute VB_Exposed = False
- Private Sub btnExit_Click()
- End
- End Sub
- Private Sub btnStart_Click()
- '--------------------------------------------------------------------------'
- ' '
- ' (C) Copyright 1996 by: aiNet '
- ' Trubarjeva 42 '
- ' SI-3000 Celje '
- ' Europe, Slovenia '
- ' All Rights Reserved '
- ' '
- ' Subject: Visual Basic code for single vector prediction. '
- ' File: T1VB432 - The XOR problem created by XOR.CSV file '
- ' EMAIL: AINET@IKPIR.FAGG.UNI-LJ.SI '
- ' '
- ' Last revision: October 17 1996 '
- ' '
- '--------------------------------------------------------------------------'
- '---------------------------------------------------------------------------
- ' Here it will be shown how we can colve the XOR problem using
- ' aiNet C functions
- ' The XOR problem:
- ' ================
- ' Number of model vectors: 4
- ' Number of variables: 3
- ' Number of input variables: 3
- ' Any discrete variables: NONE
- ' Model vectors: Inp,Inp,Out
- ' row 1: 1, 1, 0
- ' row 2: 1, 0, 1
- ' row 3: 0, 1, 1
- ' row 4: 0, 0, 0
- ' Test vectors (vectors which will be used in prediction) together with
- ' penalty coefficient and penalty method.
- ' Prediction vectors: Inp Inp Out
- ' prd 1: 0.9 0.1 ??
- ' prd 2: 0.1 0.9 ??
- ' prd 3: 0.2 0.2 ??
- ' prd 4: 0.7 0.7 ??
- ' Penalty coeffcient: 0.3
- ' Penalty methods: STATIC
- ' NOTE: Selected penalty coefficients are in no case optimal.
- ' They were selected randomly, to perform a few tests.
- ' The test results were compared with the results calculated by
- ' the main aiNet 1.22 application.
- ' ------------------------------------------------------------------------
- ' Results (rounded at fourth decimal):
- ' ------------------------------------------------------------------------
- ' Penalty cefficient: 0.3
- ' Penalty method: STATIC
- ' (RESULT)
- ' Prediction vectors: Inp Inp ( Out )
- ' prd 1: 0.9 0.1 (1.0000)
- ' prd 2: 0.1 0.9 (1.0000)
- ' prd 3: 0.2 0.2 (0.0007)
- ' prd 4: 0.7 0.7 (0.0096)
- ' ------------------------------------------------------------------------
- Dim i As Long
- Dim ret As Long ' dummy for return values
-
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Support for text output
- Dim CRNL As String ' Carriage return + newline
- Dim T As String ' tab
- Dim TT As String ' 2 x tab
- CRNL = Chr(13) + Chr(10)
- T = Chr(9)
- TT = Chr(9) + Chr(9)
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Vectors to be predicted
- ReDim predict(0 To 11) As Single
- predict(0) = 0.9: predict(1) = 0.1: predict(2) = 999
- predict(3) = 0.1: predict(4) = 0.9: predict(5) = 999
- predict(6) = 0.2: predict(7) = 0.2: predict(8) = 999
- predict(9) = 0.7: predict(10) = 0.7: predict(11) = 999
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Title
- version = aiGetVersion()
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' If you are in debug mode and you can not pass the line
- ' above, copy ainet32.dll into Windows\System directory
- major = Int(version / 100)
- minor = version Mod 100
- tOut = "aiNetDLL version " + CStr(major) + "." + CStr(minor)
- tOut = tOut + " (C) Copyright by aiNet, 1996" + CRNL
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Register DLL
- ret = aiRegistration("Your registration name", "Your code")
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Setup the model - read the csv file.
- Dim model As Long ' works like a pointer to aiModel structure
- ' In some occasions next line produces en error because of an invalid
- ' path. In this case edit this line and change the path to correct one
- model = aiCreateModelFromCSVFile("c:\cpp\ainet\dll\vb4\32bit\xor.csv")
- ' model = aiCreateModelFromCSVFile("c:\ainet\dll\vb4\32bit\xor.csv")
- If model = 0 Then
- tOut = tOut + CRNL + "Error: Something went wrong during model creation!"
- tOut = tOut + CRNL + "Please, see the source code - the file path is probably invalid!"
- tOut = tOut + CRNL + "Specifying the correct path will put the problem away."
- GoTo End_Sub
- End If
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Output the model
- nVec = aiGetNumberOfModelVectors(model)
- nVar = aiGetNumberOfVariables(model)
- ReDim flag(3) As Long
- flag(1) = aiGetDiscreteFlag(model, 1)
- flag(2) = aiGetDiscreteFlag(model, 2)
- flag(3) = aiGetDiscreteFlag(model, 3)
- tOut = tOut + CRNL + " Model name: aiNet DLL test 1 (XOR.CSV)"
- tOut = tOut + CRNL + "Number of model vectors: " + CStr(nVec)
- tOut = tOut + CRNL + " Number of variables: " + CStr(nVar)
- tOut = tOut + CRNL + " Variable names: A, B, A xor B"
- tOut = tOut + CRNL + " Discrete flag: "
- tOut = tOut + CStr(flag(1)) + " " + CStr(flag(2)) + " " + CStr(flag(3))
- ReDim var(3) As Single
- Dim value As Single
- For i = 1 To aiGetNumberOfModelVectors(model) Step 1
- ret = aiGetVariableVB(model, i, 1, value): var(1) = value
- ret = aiGetVariableVB(model, i, 2, value): var(2) = value
- ret = aiGetVariableVB(model, i, 3, value): var(3) = value
- tOut = tOut + CRNL + T + Str(var(1))
- tOut = tOut + TT + Str(var(2))
- tOut = tOut + TT + Str(var(3))
- Next i
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Normalize the model
- ret = aiNormalize(model, NORMALIZE_REGULAR)
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Prediction: Pen. coefficient = 0.30, Pen. method = STATIC
- ' This test has static penalty coefficient 0.30
- tOut = tOut + CRNL + CRNL + " Penalty coefficient : 0.30"
- tOut = tOut + CRNL + " Penalty method: STATIC"
- tOut = tOut + CRNL + CRNL + T + "A(inp)" + TT + "B(inp)" + TT + "A xor B(out)"
- ReDim pre(3) As Single
- For i = 0 To 3 Step 1
- ret = aiPrediction(model, predict(i * 3), 0.3, PENALTY_STATIC)
- pre(1) = predict(i * 3 + 0)
- pre(2) = predict(i * 3 + 1)
- pre(3) = predict(i * 3 + 2)
- ' If the output is not what it should be, you may try to change
- ' the formating argument in Format$ functions below or ...
- tOut = tOut + CRNL + T + CStr(Format$(pre(1), "0.0"))
- tOut = tOut + TT + CStr(Format$(pre(2), "0.0"))
- tOut = tOut + TT + CStr(Format$(pre(3), "0.0000"))
- ' ... simply comment out lines below and comment lines above however,
- ' the output will not look very nice.
- ' The Format$ function is locale depended - depends on the settings in
- ' your computer (Control Panel)
- ' tOut = tOut + CRNL + T + Str(pre(1))
- ' tOut = tOut + TT + Str(pre(2))
- ' tOut = tOut + TT + Str(pre(3))
- Next
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' Denormalize the model (in this case it is not necessary)
- ret = aiDenormalize(model)
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' We must call the aiDeleteModel function here since the
- ' model was allocated dynamicaly using the
- ' aiCreateModelFromCSVFile function.
- ret = aiDeleteModel(model)
- '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''
- ' End
- tOut = tOut + CRNL + CRNL + "End."
- End_Sub:
- End Sub
-